If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(16-48x^2)/(1+x^2)^3=0
Domain of the equation: (1+x^2)^3!=0We multiply all the terms by the denominator
x∈R
(16-48x^2)=0
We get rid of parentheses
-48x^2+16=0
a = -48; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-48)·16
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{3}}{2*-48}=\frac{0-32\sqrt{3}}{-96} =-\frac{32\sqrt{3}}{-96} =-\frac{\sqrt{3}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{3}}{2*-48}=\frac{0+32\sqrt{3}}{-96} =\frac{32\sqrt{3}}{-96} =\frac{\sqrt{3}}{-3} $
| 2x(x)=24 | | v/2+9=7 | | −p+60=−+10,000 | | 1=0.6^x | | 3/5z-1/4=-2/5z-1/2 | | 2x+x)=24 | | 4x-96=9x+26 | | 37=4n+3n-5 | | z^2*(z+0,7z)=0 | | z^2*(z+0,7)=0 | | 11x-65=5x+43 | | -5(4u-2)+8u=2(u+9) | | 12/(4c)+12/(6c)=2.5 | | x^2-3=-6x | | 2x-2-3x+15=1/6 | | t+311/(2)=6 | | 4u-48=-2(u-3) | | 6=2/311+t | | 3r-25=6r-40 | | 21x+6=6 | | 3/6x-2x=2=6x+5 | | x2-3=-6x | | 2(x+4)=3(2x1) | | 3(2x-5)=2(2x-3) | | 1/2x-2x+2=6x+5 | | x/2+1=1/4x- | | x/4=9/(4x) | | 4x(3x+8)-9=2(6x-8)+39 | | x/2-4=3/1/2 | | 2=1312500+x/525000+x | | 2x-10=9/6-9x-3 | | 52-2x=-152-10xx |